Programming

Leetcode-15. 3Sum

Leetcode-15. 3Sum

Given an integer array nums, return all the triplets [nums[i], nums[j], nums[k]] such that i != j, i != k, and j != k, and nums[i] + nums[j] + nums[k] == 0.

Notice that the solution set must not contain duplicate triplets.

Example 1:

Input: nums = [-1,0,1,2,-1,-4] Output: [[-1,-1,2],[-1,0,1]] Explanation: nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0. nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0. nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0. The distinct triplets are [-1,0,1] and [-1,-1,2]. Notice that the order of the output and the order of the triplets does not matter. Example 2:

Input: nums = [0,1,1] Output: [] Explanation: The only possible triplet does not sum up to 0. Example 3:

Input: nums = [0,0,0] Output: [[0,0,0]] Explanation: The only possible triplet sums up to 0.

<解題>


class Solution {
    public List<List<Integer>> threeSum(int[] nums) {
        List<List<Integer>> ans = new ArrayList<>();
        Arrays.sort(nums); // nums = [-4,-1,-1,0,1,2]

        for (int i = 0; i < nums.length - 2; i++) {
            // Skip duplicate elements for i
            if (i > 0 && nums[i] == nums[i - 1]) {
                continue;
            }

            int j = i + 1;
            int k = nums.length - 1;

            while (j < k) {
                int sum = nums[i] + nums[j] + nums[k];

                if (sum == 0) {
                    // Found a triplet with zero sum
                    ans.add(Arrays.asList(nums[i], nums[j], nums[k]));

                    // Skip duplicate elements for j
                    while (j < k && nums[j] == nums[j + 1]) {
                        j++;
                    }

                    // Skip duplicate elements for k
                    while (j < k && nums[k] == nums[k - 1]) {
                        k--;
                    }

                    // Move the pointers
                    j++;
                    k--;
                } else if (sum < 0) {
                    // Sum is less than zero, increment j to increase the sum
                    j++;
                } else {
                    // Sum is greater than zero, decrement k to decrease the sum
                    k--;
                }
            }
        }
        return ans;
    }
}

Time: O(n^2)

  1. 數組排序O(n log n)
  2. 外層O(n)、內層:雙指針O(n)->)(n^2)
  3. -> 即 O(n log n) + O(n) * O(n) = O(n^2) Space: O(n^2)