Programming

Leetcode-216. Combination Sum III

Leetcode-216. Combination Sum III

Find all valid combinations of k numbers that sum up to n such that the following conditions are true:

Only numbers 1 through 9 are used. Each number is used at most once. Return a list of all possible valid combinations. The list must not contain the same combination twice, and the combinations may be returned in any order.

Example 1:

Input: k = 3, n = 7 Output: [[1,2,4]] Explanation: 1 + 2 + 4 = 7 There are no other valid combinations. Example 2:

Input: k = 3, n = 9 Output: [[1,2,6],[1,3,5],[2,3,4]] Explanation: 1 + 2 + 6 = 9 1 + 3 + 5 = 9 2 + 3 + 4 = 9 There are no other valid combinations. Example 3:

Input: k = 4, n = 1 Output: [] Explanation: There are no valid combinations. Using 4 different numbers in the range [1,9], the smallest sum we can get is 1+2+3+4 = 10 and since 10 > 1, there are no valid combination.

<解題>


class Solution {
    public List<List<Integer>> combinationSum3(int k, int n) {
        int[] nums = new int[9];
        for(int i =0 ;i< 9; i++){
            nums[i] = i+1;
        }
        Arrays.sort(nums);
        List<List<Integer>> res = new ArrayList<>();
        helper(res, nums, new ArrayList<>(), n, k, 0);
        return res;
    }
    public void helper(List<List<Integer>> res, int[] nums, List<Integer> temp, int target, int count, int start){
        if(target < 0) return;
        if(target == 0 && count == 0){
            res.add(new ArrayList<>(temp));
        }

        for(int i =start; i< nums.length; i++){
            if(i != start && nums[i] == nums[i-1]) continue;
            temp.add(nums[i]);
            helper(res, nums, temp, target - nums[i], count -1, i+1);
            temp.remove(temp.size() - 1);
        }
    }
}

Time complexity: O(2^n) Space complexity: O(2^n + n)