There is an integer array nums sorted in ascending order (with distinct values).
Prior to being passed to your function, nums is possibly rotated at an unknown pivot index k (1 <= k < nums.length) such that the resulting array is [nums[k], nums[k+1], …, nums[n-1], nums[0], nums[1], …, nums[k-1]] (0-indexed). For example, [0,1,2,4,5,6,7] might be rotated at pivot index 3 and become [4,5,6,7,0,1,2].
Given the array nums after the possible rotation and an integer target, return the index of target if it is in nums, or -1 if it is not in nums.
You must write an algorithm with O(log n) runtime complexity.
Example 1:
Input: nums = [4,5,6,7,0,1,2], target = 0
Output: 4
Example 2:
Input: nums = [4,5,6,7,0,1,2], target = 3
Output: -1
Example 3:
Input: nums = [1], target = 0
Output: -1
class Solution {
public int search(int[] nums, int target) {
if(nums.length == 0) return -1;
int left = 0;
int right = nums.length-1;
//先確認最小值的指標left
while(left<right){
int midpoint = left + (right - left)/2;
if(nums[midpoint] > nums[right]){
left = midpoint + 1;
} else {
right = midpoint;
}
}
//把最小值left設為start,來找到他的區間,如[4,5,6,7,0,1,2]中,0的左側或右側
int start = left; //start變成最小值
left = 0;
right = nums.length-1;
if(target >= nums[start] && target <= nums[right]){ //target在start和right之間(也就是0的右側)
left = start;
} else{
right = start;
}
//找target
while (left<=right){
int midpoint = left + (right - left)/2;
if(nums[midpoint] == target){
return midpoint;
} else if(nums[midpoint] > target){
right = midpoint -1;
} else {
left = midpoint +1;
}
}
return -1;
}
}
Time: O(logN)
Space: O(1)