You are given an m x n integer matrix matrix with the following two properties:
Each row is sorted in non-decreasing order. The first integer of each row is greater than the last integer of the previous row. Given an integer target, return true if target is in matrix or false otherwise.
You must write a solution in O(log(m * n)) time complexity.
Example 1:
Input: matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 3
Output: true
Example 2:
Input: matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 13
Output: false
class Solution {
public boolean searchMatrix(int[][] matrix, int target) {
if(matrix == null) return false;
int rows = matrix.length;
int columns = matrix[0].length;
int left = 0;
int right = rows * columns -1;
while (left <= right){
int midpoint = left + (right -left)/2; //一般BST作法
int midpoint_element = matrix[midpoint/columns][midpoint%columns]; //轉換成matrix裡面的index ->index==5,要換成[1,1]
if(midpoint_element == target){
return true;
} else if(target < midpoint_element){
right = midpoint-1;
} else if(target > midpoint_element){
left = midpoint+1;
}
}
return false;
}
}
Time: O(log(mn)) ->mn為矩陣的行列數
Space: O(1)